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INTRODUC TION
US GLOBEC (Global Ocean Ecosystem 
Dynamics) scientists examined zoo-
plankton populations and their preda-
tors in four coastal marine ecosystems: 
Georges Bank/Gulf of Maine, Northern 
California Current, coastal Gulf of 
Alaska, and western Antarctic Peninsula 
(Turner et al., 2013, in this issue). In 
each, understanding the spatial and tem-
poral abundances of zooplankton species 
required understanding of the species 
population dynamics (vital rates) and the 
physical processes a�ecting the habitat. 
In continental shelf ecosystems, envi-
ronmental conditions, such as tempera-
ture, strati�cation, and current velocity, 
vary over both small and large spatial 
ranges and temporal scales, from daily 
to interdecadal. Species life histories 
interact with temporal-spatial environ-
mental variability, o�en in a nonlinear 
manner. For example, short-term tem-
poral variability in ocean conditions may 
be important for some species but not 

ABSTR AC T. �e 20-year US GLOBEC (Global Ocean Ecosystem Dynamics) 
program examined zooplankton populations and their predators in four coastal 
marine ecosystems. Program scientists learned that environmental controls on 
zooplankton vital rates, especially the timing and magnitude of reproduction, growth, 
life-cycle progression, and mortality, determine species population dynamics, 
seasonal and spatial distributions, and abundances. Improved knowledge of spatial-
temporal abundance and distribution of individual zooplankton taxa coupled with 
new information linking higher trophic level predators (salmon, cod, haddock, 
penguins, seals) to their prey yielded mechanistic descriptions of how climate 
variation impacts regionally important marine resources. Coupled ecological models 
driven by improved regional-scale climate scenario models developed during 
GLOBEC enable forecasts of plausible future conditions in coastal ecosystems, 
and will aid and inform decision makers and communities as they assess, respond, 
and adapt to the e�ects of environmental change. Multi-region synthesis revealed 
that conditions in winter, before upwelling, or seasonal strati�cation, or ice melt 
(depending on region) had signi�cant and important e�ects that primed the systems 
for greater zooplankton population abundance and productivity the following spring-
summer, with e�ects that propagated to higher trophic levels.

�e GLOBEC approach is to develop fundamental information about the basic 
mechanisms that determine the abundance and distribution of marine animal populations 
and, most importantly, the variability of these populations about their average values.
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(Ja�e et al., 1999) up to 50 m or even 
coast-wide were characterized using a 
variety of bioacoustic or optical instru-
ments (Ressler et al., 2005; Swartzman 
et al., 2005; Wiebe et al., 1996; Lawson 
et al., 2004, 2008). Such data are neces-
sary for assessing the spatial patchiness 
of prey composition and evaluating its 
impact on the feeding dynamics of zoo-
plankton predators (Young et al., 2009).

GLOBEC observations and under-
standing of population dynamics provide 
insight into the mechanisms of bottom-
up physical forcing that determine 
biological production at lower trophic 
levels (phytoplankton and zooplankton), 
which in turn in�uence production of 
upper trophic level species subject to 
resource management (Fogarty et al., 
2013, in this issue). Coupled bio-physical 
population models provided predic-
tions of spatio-temporal distribution and 
abundance of key zooplankton species 
in the North Atlantic (e.g., Ji et al., 2009; 
Stegert et al., 2012), Northeast Paci�c 
(Dorman et al., 2011; Lindsey, 2014), 
and Southern Ocean (Piñones et al., 
2013). �ese models allow a dynamic 
description of interactions among life 
history strategies and the physical envi-
ronment at many scales simultaneously 
(Figure 2). Examples of these models are 
described in greater detail in a review of 
the advancements in coupled modeling 
achieved by GLOBEC (Curchitser et al., 
2013, in this issue).

MORTALIT Y CAUSES 
AND UNCERTAINTIt
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advection-di�erencing method (Li et al., 
2006). A ��h approach for estimating 
mortality of the total plankton com-
munity using biomass spectrum theory 
(Zhou and Huntley, 1997; Edvardsen 
et al., 2002) was applied in the California 

Current System (Wu, 2008) and the 
Southern Ocean (Zhou et al., 2004). 
While the biomass spectrum approach 
may be considered for examining growth 
and survival of the plankton commu-
nity in total, it is not usually applicable 
to the study of population dynamics of 
individual species.

While each method incorporates 
key assumptions that must be exam-
ined carefully (Aksnes et al., 1997), 
the species-speci�c and stage-resolved 
population data generated during 
GLOBEC �eld studies a�orded an excel-
lent opportunity to apply these methods 
in a systematic manner to target species. 
GLOBEC results demonstrated that 
the high fecundity, high mortality life 
history of broadcast-spawning Calanus 
may co-exist with the low fecundity, low 
mortality life history of egg-brooding 
Pseudocalanus, with g biomas9n 
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While GLOBEC and other research 
programs have in the past few decades 
greatly advanced knowledge of age- or 
stage-based patterns of mortality rates, it 
remains di�cult in most cases to assign 
causation to mortality. Mortality may 
occur through advection of organisms 
to unfavorable habitats, starvation, or 
predation (Peck and Hufnagl, 2012). 
O�en, these processes are intertwined. 
For example, advection of zooplankton 
to warmer, low-food environments o�-
shore may lead to starvation, reduced 
growth, delayed development, smaller 
size, and increased probability of preda-
tion. Despite these interactions, Ohman 
et al. (2008) provide strong arguments 
that the source of Calanus �nmarchicus 
early life stage mortality on Georges 
Bank is invertebrate predation. Coupled 
bio-physical models that include advec-
tion, starvation, and mortality (Dorman 
et al., 2011; Figure 3) provide insight into 
these interacting processes, contributing 
to understanding of not only popula-
tion dynamics but also biological �uxes 
(sinking versus trophic transfer; see 
Curchitser et al., 2013, in this issue).
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are dominated by large diatom cells 
(Strom et al., 2007). Small phytoplankton 
(< 5 μm) dominate outer shelf stations 
during most of the spring-summer. �e 
cross-shelf gradients in phytoplankton 
cell size and concentration are believed 
to be due to limited availability of iron 
o�shore and limited nitrogen nearshore 
(except for the spring phytoplankton 
bloom in April to May). Nitrogen may 
become limiting on much of the inner 
shelf as early as April, shortly a�er devel-
opment of strati�cation. Inner shelf 
chlorophyll concentrations are low and 
phytoplankton are small (< 5 μm) in 
summer, except where spatially limited 
diatom blooms are present, perhaps due 
to localized upwelling (Strom et al., 2007; 
Hermann et al., 2009). Microzooplankton 
consumed most of the production by 
small (< 20 μm) cells and roughly half of 
the production by larger diatoms. 

�e large Neocalanus

http://www.nwfsc.noaa.gov/oceanconditions
http://www.nwfsc.noaa.gov/oceanconditions


Oceanography  |  December 2013 43

mimus, Calanus marshallae, and Acartia 
longiremis) exhibited a strong seasonal 
pattern that �uctuated in opposite phase: 
strong northward currents lead to low 
biomass of these species in winter and 
strong southward currents lead to high 
biomass in summer; moreover, coldwater 
copepod biomass variation at monthly to 
annual time scales was related to cumula-
tive alongshore transport patterns forced 
by the PDO (Bi et al., 2011).

Chelton et al. (1982) examined zoo-
plankton biomass in the California 
Current prior to recognition of the 
PDO in�uence and the availability 
of sophisticated circulation models, 
satellite altimeters, and data on zoo-
plankton species composition. Using 
CalCOFI (California Cooperative 
Oceanic Fisheries Investigations) data 
(1950–1979), they showed that increased 
southward transport (as indexed by sea 

level height) led to higher zooplankton 
biomass, whereas reduced southward 
transport was accompanied by decreases 
in zooplankton biomass. Roemmich 
and McGowan (1995) suggested that 
the cause of the decline in zooplank-
ton biomass in the southern California 
Current in the 1980s and early 1990s was 
a northward shi� in the location of the 
bifurcation of the North Paci�c Current, 
resulting in more subtropical water being 
imported into the Northern California 
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went into reproduction rather than 
somatic growth. Seasonal growth rates of 
E. paci�ca from short-term incubations 
were similar to cohort analysis estimates 
from the Oregon shelf (e.g., Smiles and 
Pearcy, 1971). �ese results were comple-
mented by observations of ontogenetic 
behavioral di�erences in diel vertical 
migration, and modeling of cross- and 
along-shelf transport of eggs, larvae, and 
adults (Dorman et al., 2011; Lindsey and 
Batchelder, 2011; Lindsey, 2014).

THE IMPORTANCE OF 
WINTER CONDITIONS TO 
ZOOPL ANKTON DYNAMICS
�e Southern Ocean GLOBEC program, 
a priori, focused on winter conditions 
and mechanisms that permitted the 
dominant zooplankter of the system, 
Euphausia superba, to survive the 
extended (~ 4 month) period of near-
continuous darkness and low food. 
A new �nding was that wintertime 
conditions in three other regional 
US GLOBEC studies in the California 
Current, the coastal Gulf of Alaska, 
and the Northwest Atlantic had signi�-
cant and important e�ects that primed 
the systems for greater zooplankton 
population abundance and productivity 
the following spring-summer. During 
winter in the higher latitude Gulf of 
Alaska, wind stress curl-driven Ekman 
upwelling transported nutrients into 
surface waters, but because winter phyto-
plankton production is light limited, 
the nutrients remained available in the 
surface layers to enhance phytoplankton 
(and zooplankton) concentrations only 
during the ensuing spring bloom when 
light was not limiting (Fiechter and 
Moore, 2009). In the California Current 
and Northwest Atlantic, the wintertime 
priming occurred due to enhanced o�-
season phytoplankton and zooplankton 

production (Durbin et al., 1997, 2003; 
Feinberg et al., 2010).

Wind-driven coastal upwelling of 
nutrients supports primary production 
in the California Current (Checkley and 
Barth, 2009). In the Northern California 
Current (Oregon), production is con-
centrated in spring and summer when 
upwelling-favorable winds dominate, and 
both nutrients and light are favorable for 
phytoplankton growth. Indeed, the con-
ventional view that production depends 
almost entirely upon local coastal 
upwelling processes during the so-called 
“upwelling season” is re�ected in the 
design of GLOBEC (Batchelder et al., 
2002) and other large interdisciplin-
ary studies of ecosystem processes and 
productivity in the California Current 
(Barth and Wheeler, 2005; Largier et al., 
2006). While the upwelling season is 
without question important, produc-
tion events outside of the conventional 
upwelling season may have dispropor-
tionate in�uence on ecosystem dynamics. 
One such period occurs on the Oregon 
shelf during early winter (January), 
when Neocalanus spp. and Calanus 
marshallae awaken from diapause (Liu 
and Peterson, 2010), resulting in a rapid 
two- to �vefold increase in copepod 
biomass in surface waters. Another pro-
duction window is late winter (anytime 
between late January and early March), 
when intermittent calm winds and 
clear skies allow diatoms to bloom in 
response to increased strati�cation, light, 
and su�cient nutrients. While these 
ephemeral early bloom events are minor 
compared to spring-summer coastal 
upwelling blooms (Legaard and �omas, 
2006), the early diatom production 
nonetheless fuels elevated egg produc-
tion by C. marshallae and C. paci�cus 
and an early burst of egg production 
by the coastal euphausiid, �ysanoessa 

spinifera (Feinberg et al., 2010). Years 
with an early diatom bloom produce a 
cohort of T. spinifera that matures in July 
when it becomes an important prey for 
juvenile salmon and other planktivores. 
If there is no winter bloom, there is no 
early cohort and reduced biomass of 
T. spinifera in summer.

Other California Current studies 
have identi�ed statistical relation-
ships between ocean conditions during 
the winter months and population 
dynamics, including North Paci�c krill 
Euphausia paci�ca survival (Dorman 
et al., 2011), rock�sh growth (Black et al., 
2010, 2011) and recruitment (Laidig, 
2010), and initiation of seabird nesting 
(Schroeder et al., 2009) in regions south 
of the Northern California Current. 
Winter phytoplankton blooms may 
also a�ect survival and recruitment of 
winter spawners of commercially impor-
tant living marine resources, such as 
Dungeness crabs, sable�sh, and Dover 
sole. Productivity in winter can set the 
stage for better than average recruitment 
of spring spawning �shes by “precon-
ditioning” the ocean, an idea suggested 
by Logerwell et al. (2003) with respect 
to ocean conditions experienced by 
salmon when they �rst enter the sea in 
April and May. Preconditioning is also 
important for several California Current 
resident �shes, such as Paci�c whit-
ing (
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biomass of cold water copepods and 
alongshore transport (Bi et al., 2011). 
�us, the mechanism that links the PDO 
with salmon survival and productivity 
operates through transport in�uences on 
species composition and the productiv-
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populations and survival of cod and 
haddock related to surface freshening 
and changed strati�cation in the Gulf 
of Maine due to enhanced low-salinity 
waters from Arctic ice melt related to 
the Arctic Oscillation (see Di Lorenzo 
et al., 2013 in this issue); however, details 
of the mechanisms linking climate to 
zooplankton and �sh populations are 
not fully understood. In the Southern 
Ocean, interannual variability in sea 
ice timing and extent in�uenced the 
timing and magnitude of phytoplankton 
blooms, which appeared important in 
determining interannual variability in 
krill recruitment. As in the Northwest 
Atlantic, mechanisms were not fully 
elucidated. �e least variability in 
climate forcing was found in the coastal 
Gulf of Alaska region; though there was 
a threefold variation in interannual pink 
salmon survival, the detailed processes 
responsible for the variation in survival 
have not been determined.

US GLOBEC provided many new 
insights into individual zooplankton taxa 
beyond those described in this paper. An 
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